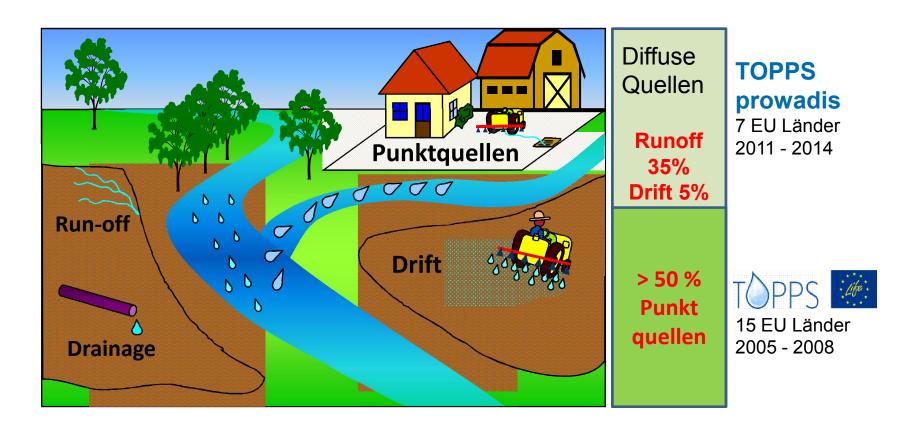


Verminderung von Pflanzenschutzmittel – Einträgen in Oberflächengewässer durch Runoff Empfehlungen aus den TOPPS - Projekten

Informationsveranstaltung Landwirtschaftskammer Niedersachsen PSM – Rückstände in Grund-und Oberflächengewässer Hannover 11.9.2013 Manfred Röttele

- Übersicht TOPPS projekte
- PSM Eintragspfade in Oberflächenwasser
- Wahrnehmung der Landwirte (Telefonbefragung Pilotgebiete 2008)
- Wahrnehmung Berater (Befragung 2012)
- Verminderung von Runoff / Erosion
- Konzept
- Diagnose
- Reduktionsmaßnahmen



TOPPS – projekte versuchen viele Beteiligte einzubeziehen Kompetenz lokaler Partner aus Wissenschaft und Beratung

ECPA – unterstützt Europäische Projekte zum Wasserschutz seit 2005

Haupteintragspfade von PSM in Oberflächengewässer

Werte: Generelle Einschätzung auf Basis von Versuchen/Messungen (Variation im Einzelfall kann erheblich sein)

Welches ist der wichtigste Eintragspfad für Pflanzenschutzmittel in Wasser ? Befragung Landwirte 2008 / Münsterland

Betrieb / Eintrags- pfad	to 45 ha	>45 to 65 ha	> 65 ha	Alle
Punkt- quellen	28	48	40	39
Diffuse- quellen	56	24	40	40
Keine Idee	16	28	20	21
n	25	25	25	75

(Telefonbefragung Kleffmann)

Die Wahrnehmung der Bedeutung verschiedener Eintragspfade schwankt erheblich - ca 20% können die Bedeutung der Eintragspfade nicht beurteilen

Risikoeinschätzung von PSM Einträgen in Wasser für die diffusen Eintragspfade (Drift, Runoff, Erosion, Drainage, Versickerung.

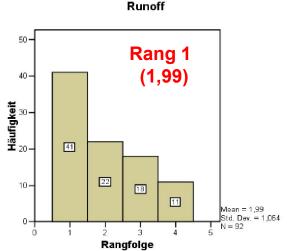
Rangfolge der Bedeutung diffuser Eintragspfade						
Land	BE	FR	DEU	IT	DK	
Drift	1	1	2	1	1	
Runoff	2	1	1	3	2	
Erosion	3	3	3	4	4	
Drainage	4	5	5	4		
Versickerung	5	4	4	2	3	

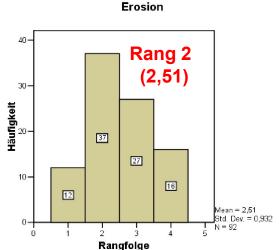
TOPPS – Landwirtbefragung 2008 - Pilotgebiete (Telefonbefragungen – Marktforschungsinstitute)

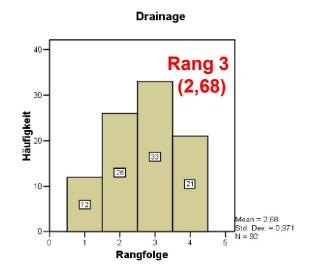
.... Nur wenn man ein Problem wahrnimmt kann man auch etwas dagegen tun!
Variation zwischen den Einzelergebnissen ist erheblich

Verschmutzungen von Oberflächengewässer durch die Landwirtschaft: - Welche Hauptprobleme würden Sie sehen?

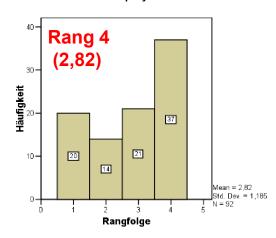
Bilden Sie eine Rangfolge: 1 = am wichtigsten ... 5 = wenig wichtig


Rangfolge der Hauptprobleme								
Land	BE	DE	DK	ES	FR	IT	PL	alle
PSM	2,28	2,75	2,38	2,58	1,72	2,36	2,36	2,38
Org- Dünger	2,88	1,93	2,25	2,17	3,20	2,30	2,51	2,40
Min Dünger	2,67	2,87	3,70	2,38	2,81	2,51	2,32	2,71
Vet - produkte	3,65	3,56	3,23	3,91	3,61	3,42	3,55	3,56
Andere Chem.	3,16	3,13	3,32	3,84	3,12	3,52	3,30	3,30
n	85	177	60	69	69	77	143	680


TOPPS-prowadis E-Mail-Befragung 2012: Berater, Behörden, Wasserwirtschaft, (Stakeholder)



Beurteilen Sie die Bedeutung folgender diffuser Eintragsquellen TOPPS – prowadis Befragung Berater / Stakeholder DEU


(Rangfolge 1 am wichtigsten .. 4 weniger wichtig)

Spraydrift

- Runoff / Erosion sind am wichtigsten
- Drift wird weniger wichtig eingeschätzt
- Wahrnehmung der Berater unterscheidet sich von Landwirten

Punkteinträge kann man vermeiden, diffuse Einträge kann man reduzieren!

TOPPS – prowadis Ansatz:

Gute fachliche Praxis (BMP) = Risikodiagnose + angepasste Maßnahmen

OHNE MOTIVIERTE BERATER WIRD ES NICHT GEHEN!

TOPPS – Runoff partner: LfL Bayern DE, DAAS-DK, Nat.Env.Inst. – PL, Irstea-FR, Arvalis-FR, InAgro-BE, Univ Turin-IT, Univ Cordoba-ES Gefördert durch ECPA

CANORE - Reduktionskonzept

Methode: Einzugsgebiet & Feld

Landschaft, Ldw Betriebe, Bodenarten, Geologie... (Erfahrung von Landwirten)

- 1. Bodenbearbeitung
- 2. Fruchtfolge / Anbaupraxis
- 3. Vegetative Puffer
- 4. Rückhalte Strukturen
- 5. Angepasster PSM Einsatz
- 6. Optimierung Beregnung

Beschreibung der Wasserbewegung und Bodenart

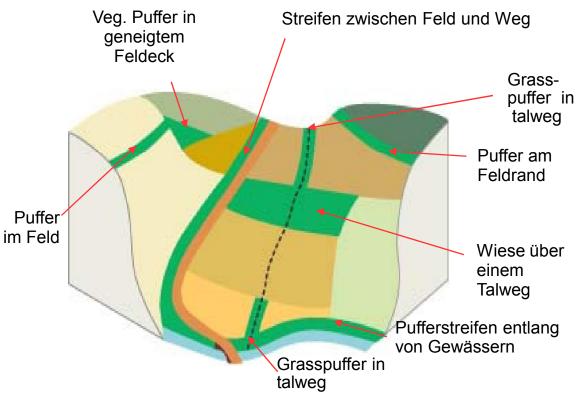
Beurteilung der Bodendurchlässigkeit und Wasserhaltekapazität

Konzept

Analyse der landw. Praxis

- Bodenbearbeitung, Fruchtfolge, PSM
- Frühjahr/Sommer und Winter/Herbst Saison

4


Risikodiagnose

Beurteilung des Risikos für Runoff und konzentrierten Abfluß

z.B. Puffer, Rückhaltestrukturen, Hecken, Gehölze, Hangform /

Länge, Steilheit, Feldlänge / -größe

natürliche / künstliche Auffangbecken

Bilder: Corpen / Artwet

Landwirtschaftlich Praxis beinflußt Wasserbewegung (Beispiele)

KH	ltur

Winter Frühjahr

Anbau

Reihenkultur Breitflächiger Anbau

Fruchtfolge

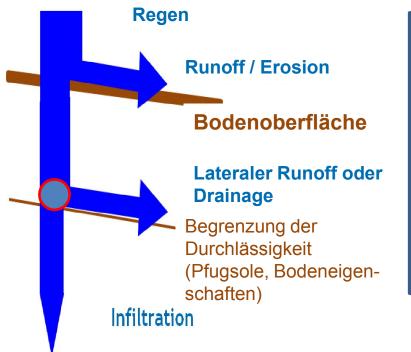
Gründüngung Folgekultur Bodenbedeckung

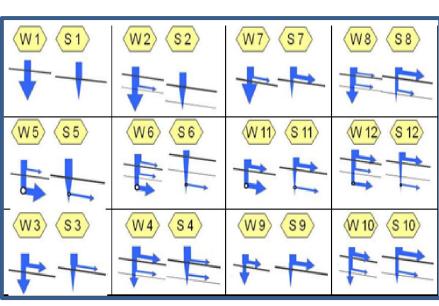
Bearbeitung

Pflügen reduzierte Bearbeitung No tillage

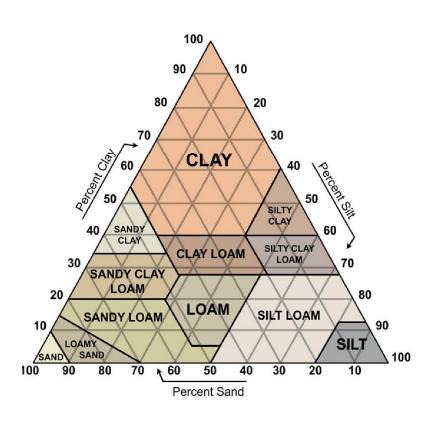
Pflege

Überfahrten
Fahrgassen
Grobes / Feines
Saatbeet





Beurteilen Sie die Wasserbewegungen Bewegungsrichtung und Intensität


W = Herbst/Winter/ S= Frühjahr/Sommer

Felddiagnose am Besten im Winter oder frühen Frühjahr

Bild: Arvalis

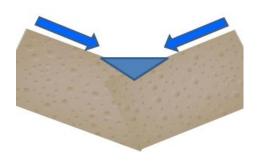
Bestimmung der Bodenart im Feld (lokale Kartieranleitung)

Abschätzung der Wasserkapazität (lokale Erfahrungswerte- Beispiel FR)

Bod	enart	Dichte	Wasserkapazität (mm Wasser per Boden cm)		
S	Sand	1,35	0,7		
SL	Sandy loam	1,4	1		
sc	Sandy clay	1,5	1,35		
LIS	Light loamy sand	1,5	1,2		
LS	loamy sand	1,45	1,45		
LmS	Middle Loamy sand	1,45	1,6		
LSC	Loam sandy clay	1,5	1,65		
LCS	Loamy clay sand	1,45	1,75		
LI	light loam	1,45	1,3		
Lm	Middle Loam	1,35	1,75		
LC	Loamy clay	1,4	1,95		
cs	Clay sand	1,55	1,7		
С	Clay sand	1,45	1,75		
CL	clay loam	1,4	1,8		
Source: Service de Cartographie des Sols de l'Aisne					

Wenn Wasserkapazität >120 mm (100 cm Profiltiefe): geringes Risiko für Oberflächenabfluss durch Aufsättigung des Bodens

3 Fälle sind zu unterscheiden


Runoff durch reduzierte Infiltration (Regenintensität: Frühjahr/Sommer)

Runoff durch **Bodensättigung**(Regenmenge:
Herbst / Winter)

Runoff / Erosion durch **Konzentration** des Wassers

TOPPS Symptome für verkrustete Böden

Boden - Verkrustung

- schwache Stabilität der Oberflächenstruktur (Effekt vom Tropfenaufschlag)
- Verkrustete Bodenoberfläche reduziert Infiltration von Wasser
- Böden mit hohen Anteilen von feinem Sand und Schluff neigen zur Verkrustung

Indikatoren:

- feine Sedimentschichten auf der Bodenoberfläche sichtbar
- Mangel an mittleren und groben Sandpartikeln
- Verkrustete Böden nicht mit rissbildenden Böden verwechseln. Diese bilden auch eine Kruste während des Sommers, haben jedoch wegen der Risse ein hohes Infiltrationspotential (> 35% Ton)

TOPPS Symptome für wassersgesättigte Böden

<u>Böden – wassergesättigt:</u>

Zeitweise Wassersättigung führt zu typischen Symptomen durch anaerobe Verhältnisse. Wassersättigung entsteht durch geringe natürliche Drainage, hohem Grundwasserstand oder durch undurchlässige Bodenschichten.

Indikatoren:

- •Grün , graue Färbung im Bodenprofil sichtbar. Eisen , Mangan Konkretionen mit rötlicher bis schwarzer Färbung.
- •Geringe Durchlässigkeit des Unterbodens (Gley; lehmig-toniger Unterboden; anstehendes undurchlässiges Gestein, z.B. Schiefer).
- •Boden bleibt nach Regen ca 2 bis 5 Tage naß

TOPPS Konzentrierter Runoff - Erosion

Transfer von Wasser und Boden Wenn Symptome von Erosion im Feld festgestellt werden sind immer Gegenmaßnahmen angezeigt

Entscheidungsmatrix zur Bestimmung des Runoff Risikos aufgrund reduzierter Infiltration

Nähe zu/ verbunden mit Oberflächenwasser	Durchlässigkeit des Oberbodens*		Steilheit des Hangs		Risikoklasse & Scenario	
Feld in der Nähe von	Niedrig Mittel		Steil (> 5%)		17	
Oberflächenwasser			Moderat (2 - 5 %)		16	
			Fla	ich (< 2%)	15	
			Sto	eil (> 5%)	14	
			Moderat (2 - 5 %)		13	
			Flach (< 2%)		12	
			Steil (> 5%)		I3	
	Н	loch	Moderat (2 - 5 %)		12	
			Flach (< 2%)		l1	
Feld nicht in der Nähe / verbunden mit	Wassertransfer zu hangabwärts gelegenem Feld	ja	Runoff erreicht Wasser	ja	Т3	
Oberflächen Wasser	sertra angak gener	Jener	Ru err Wa	nein	T 2	
	Was zu ha		nein		T1	

Risiko hoch Risiko mittel Risiko gering sehr gering

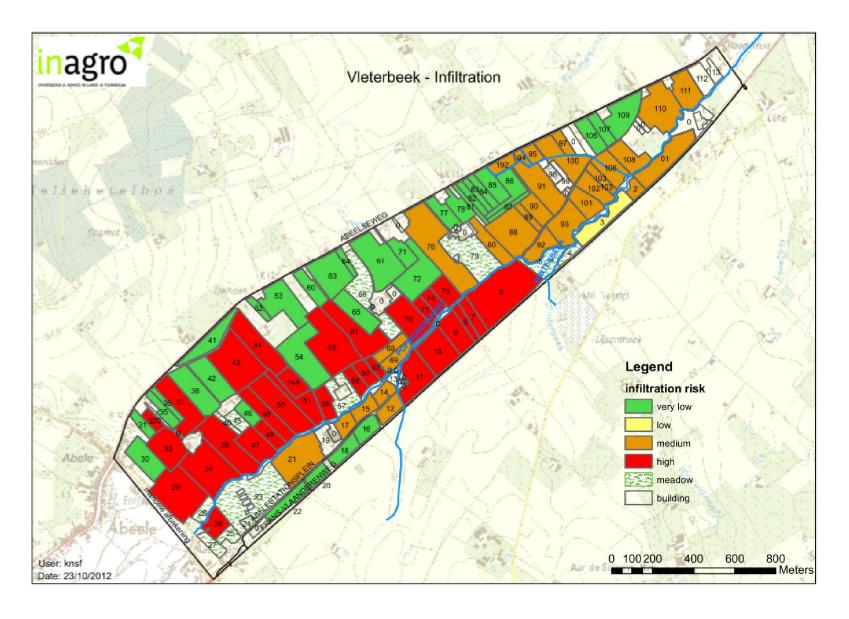
I = Infiltration; T= Transfer / * Bewertungsschema zur Diagnose

Entscheidungsmatrix zur Bestimmung des Runoff Risikos bei wassergesättigtem Boden

Von links

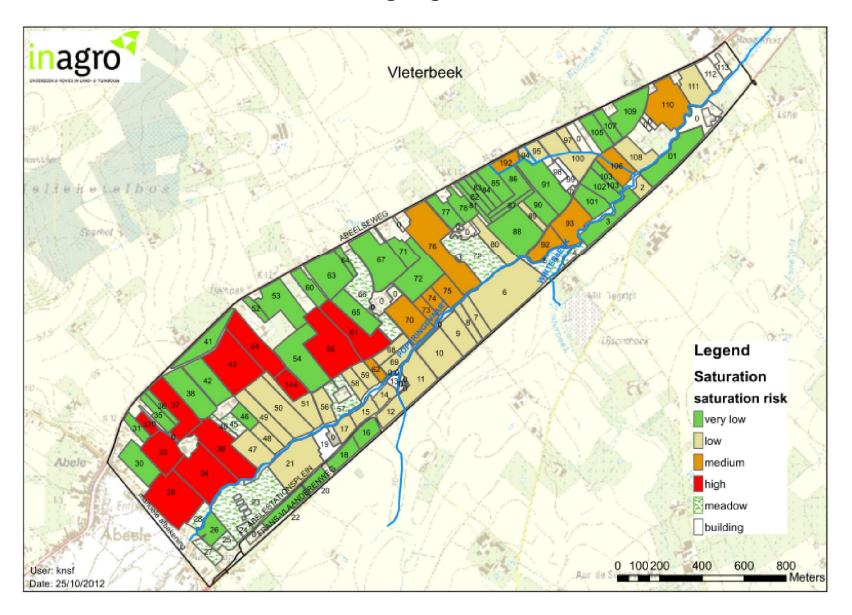
Nach rechts

Nähe zu/ verbunden mit Oberflächen Wasser	Drainage Status	Topographie/ Position		rboden ssigkeit **	WHK *	Risikoklasse & Scenario
Feld in der Nähe von Oberflächen Wasser	Nicht drainierte Fläche	Unterhang / Talboden	Pflugsole + Störung der Bodendurchlässigkeit		Alle WHC	S 4
				ler Störung der	< 120 mm	S 4
			Durchi	lässigkeit	> 120 mm	S 3
			Keine Pflugso	le & Störung der	> 120 mm	S3
			Durchl	lässigkeit	> 120 mm	S 2
		Oberhang / fortlaufende Hangneigung	•	Störung der rchlässigkeit	Alle WHC	S 4
		Haligheigung	Pflugsole od	ler Störung der	< 120 mm	S 3
			Durchl	lässigkeit	> 120 mm	S 2
			Keine Pflugso	le & Störung der	> 120 mm	S 2
			Durchl	lässigkeit	> 120 mm	S 1
	Drainierte Fläche	Alle Hang- positionen		Störung der rchlässigkeit	Alle WHC	SD 3
			Pflugsole od	ler Störung der	< 120 mm	SD 3
				lässigkeit	> 120 mm	SD 2
			_	le & Störung der	> 120 mm	SD 2
			Durchl	lässigkeit	> 120 mm	SD 1
Feld nicht in der Nähe / verbunden mit	Nicht drainierte Fläche	Wassertransfer zu hangabwärts-	Ja	Runoff erreicht	Ja	Т3
Oberflächen Wasser		liegendem Feld		Wasser	Nein	T2
				Nein		T1


Risiko hoch Risiko mittel Risiko gering sehr gering

^{*} WHK = Wasserhalte Kapazität

^{**} Staunässe-Horizont mit hydromorphen Merkmalen


Ergebnisse Pilotgebiet BE

1. Runoffrisiko durch reduzierte Infiltration

Ergebnisse Pilotgebiet BE

2. Runoffrisiko durch Wassersättigung des Bodens

Reduktionsmaßnahmen konzentrieren sich auf zwei Aspekte

1. ERHÖHUNG DER WASSERINFILTRATION IM FELD

 2. ZURÜCKHALTUNG VON FLIEßENDEM WASSER UND SEDIMENTEN IM EINZUGSGEBIET

Maßnahmen zur Runoff – Vermeidung

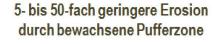
angepasst und praktisch

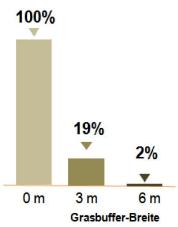
Werkzeugkasten

Bodenbearbeitung	Reduzierte BearbeitungFahrgassen ManagementRauhes SaatbeetBarrieren im Feld	 Oberflächenverdichtung vermeiden Unterbodenverdichtung vermeiden Bearbeitung entlang Höhenlinien
Anbaupraxis	FruchtfolgeStreifenanbau (W/S)Vergrößerte Vorgewende	Einjährige ZwischenfrüchteMehrjährige BodenbedeckungErhöhung der Saatstärke
Vegetative Puffer	Puffer im FeldTalweg PufferPuffer entlang GewässerPuffer am Feldende	 Verdichtung Feldzugang vermeiden Hecken anlagen / pflegen Gehölze anlegen /pflegen
Rückhaltestrukturen	Barrieren am FeldrandBewachsene Kanäle	Auffangbecken anlegenFaschinen / Wasser verteilen
Angepasster Einsatz von PSM	Applikationstermin anpassenOptimierte saisonale Anwendung	Angepasste Produktwahl / Dosierung
Optimierte Beregnung	Angepasste Technik	Optimierter Termin und Menge

Prioritäten bei der Runoff-Vermeidung

- 1. Vermeiden Sie Runoff dort wo er beginnt: Setzen Sie Maßnahmen im Feld um.
- 2. Falls Maßnahmen im Feld nicht ausreichen, halten Sie das Wasser im Einzugsgebiet zurück Nutzen Sie Maßnahmen außerhalb des Feldes.
- 3. Kombinieren Sie Maßnahmen und realisieren Sie sich verstärkende Wirkungen.





Relativer Sedimentaustrag während einer Vegetationsperiode

(INRA 97/98 Le-Bourg-Dun)

Einträge von PSM in Gewässer können nicht vollständig verhindert werden,

.... aber man kann diese weitgehend vermeiden.

Verbesserter Wasserschutz beginnt im Kopf

Es ist nicht genug, zu wissen, man muß es auch anwenden; es ist nicht genug, zu wollen, man muß es auch tun.

Goethe

Vielen Dank für Ihre Aufmerksamkeit